
Carnegie Mellon University
Software Engineering Institute

Workshop on
COTS-Based Systems
Patricia A. Oberndorf
Lisa Brownsword
Ed Morris
Carol Sledge
(Editors)
November 1997

cü| Ejf I mm iiilllSSM^
Special Report

CMU/SEI-97-SR-019

19971209 008

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Special Report
CMU/SEI-97-SR-019

November 1997

Workshop on COTS-Based Systems

Patricia A. Oberndorf

Lisa Brownsword

Ed Morris

Carol Sledge

(Editors)

COTS-Based Systems

DTTC QUALITY INSPECTED 4

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
HanscomAFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Jaf Alonis, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KTND WITH RESPECT TO FREEDOM FROM PATENT.
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so.
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.
Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone:—(304) 284-9000 / FAX—(304)284-
9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone—(703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Ann: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218 / Phone—(703) 767-8274 or toll-free in the U.S.—1-800 225-3842.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1

1.1 The First COTS-Based Systems Workshop 1

1.2 Participants 1

1.3 Workshop Structure 1

1.4 Structure of This Report 2

2. Workshop Results and Themes 3

2.1 Future Vision 3

2.2 Recurring Workshop Themes 4

2.2.1 Evaluation Is Continuous, Not a Discrete Step 4

2.2.2 Intimate Relationship of Evaluation and Design 4

2.2.3 Influence of the Marketplace on Requirements : 5

2.2.4 CBS Approach as Risk Mitigation 5

2.2.5 Importance of Prototyping 5

2.2.6 New Skill Sets Needed 5

3. Technology and Product Evaluation Breakout Group 7

3.1 Why Do We Evaluate? 7

3.2 What Do We Evaluate? 9

3.3 How Do We Evaluate? 10

3.4 Why Is Evaluation Hard? What Can We Do to Make It Easier? 13

3.4.1 Evaluation Case Studies 14

3.4.2 Lessons Learned from the Case Studies 18

3.4.3 Things We Need 19

3.4.4 Do's and Don'ts 19

3.4.5 Risk Management 20

CMU7SEI-97-SR-019

3.5 Conclusions of the Technology and Product Evaluation BOG 21

4. Engineering and Design Breakout Group 23

4.1 Inception Phase Issues 24

4.2 Elaboration Phase Issues25

4.3 Construction Phase Issues 29

4.3.1 Construction Techniques 30

4.4 Transition Phase Issues 31

4.5 Evolution Phase Issues 32

4.6 Conclusions of the Engineering and Design BOG 33

4.6.1 Problem Summaries 33

4.6.2 Observations 35

5. Acquisition and Management Breakout Group 37

5.1 Metrics 39

5.1.1 Why Should I Measure? 39

5.1.2 What Should! Measure? 40

5.1.3 How Do I Measure? 40

5.1.4 What Are the Tradeoffs? 42

5.2 Wisdom and Understanding 42

5.3 Policy and Guidance 44

5.3.1 Guidance for Contracting 44

5.3.2 Guidance Regarding Standards 45

5.3.3 Guidance Regarding Sustainment 45

5.4 "Answers" 47

5.5 Conclusions of the Acquisition and Management BOG 48

6. Workshop Conclusion 49

Appendix A: Workshop Participants 51

li ~ CMU/SEI-97-SR-019

A.1 Technology and Product Evaluation Breakout Group 51

A.2 Engineering and Design Breakout Group 51

A.3 Acquisition and Management Breakout Group 52

Appendix B: Unified Modeling Language 53

Appendix C: The Five-Panel Model 55

Appendix D: List of Acronyms 57

References 59

CMU/SEI-97-SR-019

iv CMU/SEI-97-SR-019

List of Tables

Table 1. Some Things to Measure 41

CMU/SEI-97-SR-019

vi CMU/SEI-97-SR-019

List of Figures

Figure 1: Progressive Filtering 10

Figure 2: Process Tool Selection 14

Figure 3. Strategy Analysis Matrix 47

Figure 4: The Five-Panel Model 55

CMU/SEI-97-SR-019 vii

viii CMU/SEI-97-SR-019

Report on the First COTS-Based Systems Workshop

Abstract: This report documents the proceedings of the first Workshop on
COTS-Based Systems, held at the Software Engineering Institute (SEI) June
10-11, 1997. It describes the workshop activities, the discussions of three
breakout groups, and some general conclusions reached by participants in
the workshop.

1. Introduction

1.1 The First COTS-Based Systems Workshop

The first COTS (commercial off-the-shelf)-Based Systems (CBS) Workshop was held in
Pittsburgh, Pa., at the SEI on June 10 and 11, 1997. The workshop brought together
practitioners of various aspects of COTS-based systems management, procurement,
development, and maintenance in order to share the problems that must be faced and the

solutions that they have found.

1.2 Participants

The participants in this workshop represented many different organizations and brought with
them a wide variety of experiences. Participants included representatives of the U.S.
Department of Defense (both civilian and military), other civilian federal agencies, large
software systems organizations, other federally funded research and development centers
(FFRDCs), and academia. Participants from the National Research Council of Canada
provided an international perspective. The workshop was hosted by the Dynamic Systems
Program of the SEI, but several other SEI programs participated as well, contributing their
particular expertise. Participants also came from the Carnegie Mellon University campus.

Appendix A provides a complete list of participants, arranged according to the breakout
group in which they participated.

1.3 Workshop Structure

The workshop began with a plenary session, during which Tricia Oberndorf (SEI) discussed
the goals and structure of the workshop and some foundational ideas from current SEI work
in the area of COTS-based systems. This served to create a common perspective for
participants so that subsequent sessions could be more productive.

CMU/SEI-97-SR-019

After the plenary session, the workshop participants joined one of three breakout groups
(BOGs):

• Technology and Product Evaluation

• Engineering and Design

• Acquisition and Management

The charter of each group was to identify CBS issues in their topic area, elaborate on the
critical issues, and identify possible solutions (e.g., approaches, sources). The task before
them was to capture the participants' experiences and the issues they have been facing in
dealing with CBS, then to discover what approaches have been used and to identify
sources for further information.

Over the course of the two days, the groups had wide-ranging discussions of a number of
issues regarding COTS- and component-based systems. The breakout groups reported
their findings back in plenary at the end of the second day of the workshop.

1.4 Structure of This Report

The remainder of this report documents the results of this workshop. Chapter 2 presents the
results of a brainstorming session in which participants contributed to a future vision of
COTS-based systems. The sections in Chapter 2 capture recurring themes that emerged
from the workshop discussions. Chapters 3 through 5 present the results of the three
breakout groups (BOGs):

• Technology and Product Evaluation (Chapter 3)

• Engineering and Design (Chapter 4)

• Acquisition and Management (Chapter 5)

Chapter 6 presents a short conclusion. The appendices list the participants in the three
BOGs (Appendix A), describe the unified modeling language (Appendix B), provide an
overview of the five-panel model (Appendix C), and define the acronyms used in this report
(Appendix D).

Throughout this report, the editors attempted to present the information exactly as it was
recorded during the workshop, in order to ensure that we did not change the meaning of the
findings. As a result, the wording of some of the findings and conclusions in this report may
not always flow smoothly.

CMU/SEI-97-SR-019

2. Workshop Results and Themes

2.1 Future Vision

During the initial plenary session, workshop participants were asked to help build a vision of
software and system engineering based on disciplined practices for the use of COTS
components. Elements of this vision that emerged during the discussion include

different life cycles

processes and tools for evaluating components

new maintenance approaches

a new or revised Capability Maturity ModelSM (CMM®)

better knowledge of CBS risks and tradeoffs, plus a method for measuring them

improved ways of defining requirements that simplify component evaluation

appropriate standards for hardware, software, processes, and interfaces

a better understanding of the central role of architecture

recognition of the fluidity of COTS-based system design

better understanding of the effect of COTS on system architecture, design, safety and
security

more complete and accurate component specifications

a catalog or repository of component information, with sufficient resources to maintain it

fixed architectures and component stores for some domains

a new industry where integrators bundle together components into larger packages

a framework for testing multiple components working together

new laws fostering competition

modified Federal Acquisition Regulations (FARs) to better encourage the use of COTS

new laws concerning liability

updated license management and payment schemes

a well-defined business case

proactive incentive and management

risk mitigation strategies

strategic alliances with vendors

SM Capability Maturity Model is a service mark of Carnegie Mellon University.

® CMM is registered in the US Patent and Trademark Office.

CMU/SEI-97-SR-019

• definitions for the new skill sets required

• better educated engineers, managers, and customers

As the workshop proceeded, these ideas re-emerged in various forms from the three
breakout groups.

2.2 Recurring Workshop Themes

During the course of the workshop, different sessions and BOGs focused on a wide variety
of topics. However, certain themes emerged repeatedly, in different groups at different
times, and were arrived at for different reasons. The most important of these themes are
discussed in Sections 2.2.1-2.2.6.

2.2.1 Evaluation Is Continuous, Not a Discrete Step

One theme that emerged clearly from all three breakout groups was the realization that the
evaluation of software components must become a continuous process during the lifetime
of a COTS-based system. That is, evaluation is not just something that is done to get such
a system started; rather, it is something that is done continuously, since the updated
information will be continuously needed until system retirement. This continuous evaluation
not only reflects the upgrade cycles of component vendors; it also provides a way of
identifying new technologies that can support the evolution of a system.

2.2.2 Intimate Relationship of Evaluation and Design

In connection with the above observation, the workshop participants noted that both system
requirements and the marketplace are changing. The activities of evaluation serve to bridge
the gaps between them and so become closely intermingled with the design of the system.
It is tempting to make the mistake of thinking that evaluation is a separate activity from
design. But if these activities are not intertwined, system designers will find themselves
specifying systems that cannot be built with commercially available components or failing to
make use of particularly promising capabilities emerging in the marketplace.

In this scenario, evaluation becomes a part of design and engineering and also of
management and acquisition, making it impossible to truly separate these activities into
distinct life-cycle phases. This impact of the marketplace on design has profound
implications for new CBS life-cycle models and processes. Unfortunately, the participants in
the workshop were not able to explore the evolving CBS life-cycle models and processes
due to lack of time.

CMU/SEI-97-SR-019

2.2.3 Influence of the Marketplace on Requirements

Another closely related theme recognizes another impact of the marketplace on the
development and evolution of COTS-based systems: the requirements need to be much
more malleable than with traditional system approaches. A strictly top-down systems
approach (freeze the requirements, then freeze the design, then implement the system) did
not work well in the past because it was not possible to anticipate how the project would
progress or change over a long development period. Now, this process will not work at all
for COTS-based systems because the very thing on which these systems will be based-the
COTS marketplace-is in constant change. The key to sound COTS-based systems
development in the future will be well thought-out requirements that are clearly distinguished
and prioritized. The prioritization will need to recognize which requirements are absolutely
essential, which are needed but might be achieved in a variety of ways, and which would
just be "nice to have."

2.2.4 CBS Approach as Risk Mitigation

All three breakout groups identified approaches to CBS in terms of risk mitigations. In other
words, the things that need to be done differently for CBS are largely targeted towards
addressing the potential risks introduced by the use of commercial products in mission-
critical systems.

2.2.5 Importance of Prototyping

One can never be certain of all of the hidden assumptions embedded in a given product.
Since CBS are dependent on commercial and other non-developmental products, the
characteristics of a system built from such products will also be uncertain. This increases
the need for prototyping the system to identify the responses of the individual products and
of the entire system under a range of operating conditions.

2.2.6 New Skill Sets Needed

All of these things taken together emphasize that the development of CBS is a new way of
doing business in the development of systems. It is common for higher level managers and
policy makers to surmise that using commercial products and depending on commercial
industry will reduce the need for government expertise. All three breakout groups came to

CMU/SEI-97-SR-019 ~ ~~~ 5

exactly the opposite conclusion. The dependence on commercial industry and products
increases the need for the government to be a smarter consumer. This in turn takes more
expertise, not less. The bottom line is that using COTS is harder, not easier.

CMU/SEI-97-SR-019

3. Technology and Product Evaluation Breakout Group

Members of the Technology and Product Evaluation BOG represented industry,
government, and academic perspectives. Appendix A lists the members of the BOG.

This BOG overcame the interplay between multiple personalities (two facilitators!) to identify
a number of metaphors for CBS evaluation strategies. They worked through several
instances of evaluations described by participants, from which some themes and ideas
emerged. In addition, the breakout group identified a number of evaluation "dos" and

"don'ts."

This breakout group structured its discussions around a series of important evaluation

questions:

1. Why do we evaluate things? (See Section 3.1.)

2. What kinds of things do we evaluate? (See Section 3.2.)

3. How do we evaluate things? (See Section 3.3.)

4. What is hard about evaluation, and what do we do to make it easier? (See Section 3.4.)

The sections that follow cover these questions.

3.1 Why Do We Evaluate?

After some initial discussion, it became clear that different individuals had different ideas of
why we need to evaluate software. The discussion concentrated on three forms of
evaluation:

• evaluation of a product against what it is claimed to do

• evaluation for the qualities we would like in a particular system

• evaluation of fitness for use in a given context

We often want to measure (evaluate) whether a component actually provides the services
that it claims to provide. Sometimes these services are only documented in a user manual
or a brochure. In other cases, these services are documented in a published interface
document (such as a published application program interface [API]) or component
specification. In still other cases, the specification against which the component is evaluated
is a de facto or formal standard; this form of evaluation is sometimes called validation or
conformance testing. A closely related activity often involves determining whether the
services provided are actually the ones we want. That is, not only does the component do
what it says, but are these the things that we want it to do?

A second reason we evaluate is to determine whether the component demonstrates the
qualities that are necessary for the system, but are not necessarily represented in the

CMU/SEI-97-SR-019 7

interface. The BOG participants suggested that such "non-functional" qualities as reliability,
maintainability, security, and performance are particularly hard to determine in a COTS
component, yet have a huge impact on the viability of the component and the overall
system. Evaluation of non-functional qualities is particularly hard because we often have an
incomplete understanding of non-functional requirements, coupled with inadequate tools
and techniques for determining whether the software meets expectations.

After some discussion, the BOG recognized that "fitness for use" within a given context
encompassed the other two forms of evaluation, along with many other technical,
organizational, business, and political factors. There are two important points here. First, the
fitness for use of a component is the product of many factors, and an attempt to evaluate a
component from a single viewpoint will likely fail. For example, even a component that is
extremely well suited from a technical standpoint will not be fit for use if there are strong
political trends that work against it. Second, we can evaluate the fitness of a component
only within a specific (and concrete) context. To perform a meaningful evaluation, we must
have a purpose, a set of requirements, and criteria for determining whether a component
meets those requirements. Without this context, evaluation is not meaningful.

The role of context in determining fitness for use was made clear to the BOG when one of
the facilitators suggested they discuss the evaluation of two distributed object technologies
(Common Object Request Broker Architecture [CORBA] and Distributed Component Object
Model [DCOM]). After a few minutes in a different sort of bog, the group came to the
conclusion that without a meaningful (i.e., real) context in which to perform such an
evaluation, the exercise was meaningless. This conclusion has far-reaching ramifications for
organizations intent on developing "pre-approved" lists of components. At best, such lists
can provide only very general guidance by eliminating grossly flawed components from
consideration. At worst, a list of pre-approved components can misdirect an organization
into a false sense of security regarding approved components, since inclusion on such a list
does not ensure fitness for use in a specific system situation.

This early discussion also hinted at a different role for component evaluation. Various BOG
members suggested that, in the course of an evaluation, we often make serendipitous
discoveries that alter the perceived architecture or design of the system, or even the system
requirements. This suggests that evaluation and selection of components may play a role in
virtually all phases of system construction. In other words, evaluation cannot be divorced
from system specification, architecture, design, and implementation. This will have strong
ramifications for the processes that must be developed for creating COTS-based systems.

The members of the BOG recognized that, regardless of the motivation, evaluation is a
decision toot, it is not the decision. Evaluation is not an end in itself but is designed to
support certain kinds of decisions. Such decisions include

• determining fitness for use of those aspects of the component that we desire

• make-buy decisions

• choosing among products

8 CMU/SEI-97-SR-019

• choosing among vendors

• discovering properties of the system

• validating claims

• making architectural, design, and requirement decisions

Often such "smaller" decisions support the major decisions necessary for a project to meet
cost and schedule goals.

3.2 What Do We Evaluate?

Products, vendors, customer bases, and activities involved in rolling out products (support,
training, etc.) are among the more obvious things identified as potential subjects of
evaluation. A partial list of other subjects of evaluation efforts includes

• a technology, as opposed to a product (for example, CORBA technology vs. a CORBA
implementation from a specific vendor). However, technology evaluation can be costly,
and there are often many unknowns about what problem the technology will solve and
how the technology will evolve.

the maturity of a technology and of vendors

the long-term viability of the product or technology

product design patterns, which can affect the resources of the system and its evolution

the architectural model of a product

the impact of a product or technology on the computing paradigm

a specific subset of a product or technology

the qualifications of the vendor

the ability of the organization to adopt and manage the product

The BOG repeatedly reached the conclusion that evaluation cannot be focused on only a
few characteristics of a product. Rather, the evaluation process will be multifaceted, with
many different product, vendor, technology, organizational, and other factors considered.

The BOG also recognized that evaluation is not a "one-time" occurrence. Evaluation of
components occurs during (at least) three distinct activities during the system life cycle:

• when making choices of technologies, products, and vendors during system selection,
i.e., component selection

• when evaluating new releases of existing components, i.e., release acceptance

• when evolving a system with technology or product refreshment, i.e., system
maintenance or change

As a consequence, an organization should build up and maintain a capability to evaluate
products and technologies.

CMU/SEI-97-SR-019

3.3 How Do We Evaluate?

The next issues considered by the BOG were the ways in which we evaluate COTS
components and whether we evaluate different kinds of components differently.

While a number of different approaches for COTS product and technology evaluation were
discussed, we can summarize the work of the BOG by postulating that the evaluation
approaches discussed employ three basic strategies:

• progressive filtering

• puzzle assembly

• keystone identification

Progressive filtering

Progressive filtering represents a strategy whereby a component is selected from a larger
set of potential components. Starting with a candidate set of components, progressively
more discriminating evaluation mechanisms are applied in order to eliminate less fit
components. Early filters facilitate rapid judgments based on information provided directly
by the component vendor (e.g., specifications, component documentation). Intermediate
filters may involve actual execution of the component (often in a stand-alone mode) to
further assess suitability. Later filters often involve integration and execution of selected
component features in a testbed representing the rest of the system. Figure 1 shows the
progressive filtering strategy with example filters.

Early filters
Vendor literature
External reviews
Platform support

Mid-level filters
Stand-alone tests
Benchmarks

Later filters
Sample problems
Prototypes

Figure 1: Progressive Filtering

In general, as the discriminatory power of the filter increases (i.e., becomes more similar to
the execution demands of the developed system), the number of components subjected to
the filter becomes smaller. More discriminating filters normally require far more effort to
develop and use. However, they also greatly increase confidence that an appropriate

10 CMU/SEI-97-SR-019

component is selected (and that inappropriate components are eliminated). The strength of
the progressive filtering approach is that it tends to economize effort through low-cost
elimination of some contenders, coupled with a more thorough evaluation of those that are
better suited to the system.

One example of the progressive filtering technique can be found in [Lichota 97], where the
set of potential components is winnowed by applying increasingly exacting evaluation
techniques. After the products are identified, the initial screening is provided through
analysis of product documentation, specifications, briefings, and demonstrations. Those
products that survive the initial screening are then subjected to increasingly exacting
evaluations involving stand-alone testing, integration testing, and finally field testing. Each
round of evaluations can potentially reduce the set of components to be tested for the next
round. Reducing the number of components under consideration is important, since
successive evaluation phases require increasing amounts of effort. In addition, the
approach provides increased confidence that the components that survive the process are
likely to fulfill expectations and successfully serve in the completed system.

A discussion of evaluation case studies by members of the BOG highlighted an important
consideration for the progressive filtering approach: it has little to say about the criteria that
should be considered when evaluating components, or about the number, complexity, and
granularity of the filters that must be applied. Different organizations employed different
filters, depending on the specific context of the evaluation activity. There is no
predetermined set of filters that will universally determine whether a product is fit for use.

BOG members also recognized that, in its basic form, the progressive filtering approach
does not address the necessary balance between the mission, marketplace, and system
during the evaluation process. However, many progressive filtering strategies discussed in
the BOG's case studies included one or more feedback loops to address this problem.

Puzzle assembly

A second ßtrategy identified by the BOG is called puzzle assembly. The puzzle assembly
model begins with the premise that a valid COTS solution will require fitting the various
components of the system together as a puzzle. That is, it is difficult to determine the
characteristics of any one piece without simultaneously considering the range of
characteristics of the other pieces. This implies that, just because a component "fits" in
isolation (perhaps as determined by filtering techniques), it is not necessarily true that it fits
when combined into a system. In addition, creating a COTS-based solution requires
maintaining the malleability of requirements for the system, the components, and the
interfaces until the outline of the completed system emerges. Thus, puzzle assembly
involves discovery of system potential.

CMU/SEI-97-SR-019 ff

The puzzle assembly approach applies an evolutionary prototyping technique to build
versions that are progressively closer to the final system. The extensive use of prototyping
provides an opportunity to understand the characteristics of various components as well as
the system. During prototyping, it is possible to get a sense of the effort required to lash
together components into a system. Data concerning this effort is an important input in
determining whether a component is a viable piece of the final solution.

If the pure progressive filtering technique can be thought of as a "reductionist" approach to
determining whether a COTS product will suffice (by identifying filters that eliminate
inappropriate components), the puzzle assembly technique focuses on the gestalt of the
system. In other words, underpinning the puzzle assembly approach is the philosophy that
the interactions between components are preeminent in determining the characteristics of
the system. Further, it is difficult (and perhaps mistaken) to assemble a system by focusing

on selection of individual components.

The BOG realized that these two extremes (reductionist progressive filtering and gestalt
puzzle assembly) are rarely applied in isolation. More discriminating filters in the
progressive filtering approach usually involve some concept of how the component will work
with other components. In [Lichota 97], this involves a filter requiring in situ demonstration of
the capabilities of the component interacting with other components. Likewise, the
practitioners of the puzzle assembly approach apply some progressive filtering strategies, if
only to winnow the number of components involved in prototype efforts; they do not develop
prototypes for every potential combination of components.

Keystone identification

A number of the BOG members suggested that, regardless of whether we complete puzzles
or build filters, specific component or technology selections are critical to the design and
architecture of the system and the selection of other components. In some cases, these
keystones are identified due to specific use requirements, lack of viable alternatives, or
constraints imposed by existing systems. In other cases, the importance of selecting these
keystone products becomes evident during evaluation of COTS alternatives. Often,
keystone products provide low-level or widely used services that are employed by other

COTS components.

Selection of a keystone will normally constrain the evaluator's freedom in selecting other
products, since keystone characteristics (e.g., vendor, type of technology, API) will force a
focus on specific characteristics of remaining components. Often, interoperability with the
keystone will become an overriding concern, effectively eliminating a large number of other
products from consideration. While this may eliminate some promising products, the
benefits derived from the lens provided by a keystone can reduce evaluation cost and effort.

12 CMU/SEI-97-SR-019

Some members of the BOG quickly pointed out that a keystone need not be a product. It
may also be a strategy for selecting components or architecting the system (e.g., open
system strategy, distributed object strategy), or it may be a standard (e.g., Object
Management Group [OMG] CORBA). Thus, it is possible to employ multiple levels of
keystones - for example, by determining that the system will employ a distributed object
strategy, centered on the CORBA standard and using lONA's Orbix products.

Selecting and/or employing a keystone does not eliminate the need for evaluation, both of
the keystone itself and of the accompanying components. The need for critically examining
the mission, the marketplace, and the system remains when evaluating the candidates for
inclusion as a keystone and for evaluating the remaining components. As such, lists of pre-
approved components that intend to provide various keystone products can offer only
limited guidance and should not be considered the primary selection mechanism.

The BOG recognized that most organizations could benefit by employing all of these
strategies and opportunistically switching between strategies depending on the evaluation
context. For example, while pursuing a puzzle strategy, we may recognize the central
importance of a particular component decision. This keystone decision point may best be
addressed by progressive filtering of keystone candidates. Part of this filtering effort may
involve in situ analysis of candidates (a puzzle assembly strategy) for the central component
position in concert with other components.

3.4 Why Is Evaluation Hard? What Can We Do to Make It Easier?

The BOG quickly recognized that evaluation is hard for a variety of reasons. These include

the many dimensions of the COTS component to be evaluated

the lack of consensus evaluation approaches

the subjective nature of evaluation data

the pace of change within the COTS marketplace

the lack of visibility into the internal workings of the product

Many other reasons were suggested as well. In fact, what seemed to motivate participation
in this particular BOG were previous difficulties in making good evaluation decisions. The
BOG mined these experiences by encouraging participants to discuss their problems with
and solutions for evaluating COTS components. Some of these case studies appear in the
following sections.

CMU7SEI-97-SR-019 13

3.4.1 Evaluation Case Studies

3.4.1.1 Selecting a Process Tool

One participant spoke of his experiences selecting a process tool. This evaluation activity
took about three weeks of effort and is illustrated in Figure 2. First, he gathered
requirements from the customer, based largely on his knowledge of software processes and
hypothetical users. In parallel, he performed a rapid, partial market survey largely from the
Web, tool fairs, cross references he obtained, and the like. This market survey yielded
feature lists and candidate literature, which were brought together with the requirements for
an initial screening.

The initial screening reduced the number of candidates; the remaining ones were then
subjected to some scenario-based testing, using evaluation copies of the products. A final
test on the full product resulted in a suggestion to the customer for the tool to choose.

The participant noted that he did not attempt to qualify the vendor (which was justified by
the project timeline and scale of the effort) and he collected no testimonials from users.

The BOG member who performed this evaluation activity noted .that he was very
disappointed with the outcome, since his work achieved little visibility within the target
organization.

process
knowledge

• feature list
• candidates' literature

• Web
• tool fairs

cross references

recommendation

Figure 2: Process Tool Selection

14 CMU/SEI-97-SR-019

3.4.1.2 Image Delivery Across a Network

Another participant reported on an effort to enhance an existing database encased within an
inadequate system. The upgraded capability should handle 20 million large images, scaled
between 100K and 4M bytes. This database was to be accessed from widely dispersed
(worldwide) sites. The evaluation involved identifying a suite of products that could be

integrated to support this overall scenario.

Requirements were gathered as use-case scenarios. Groups of products were identified
and classified (e.g., databases, user-interfaces, web interfaces, image manipulation
products). The effort avoided describing any particular architecture; the components were

expected to drive the architecture.

To find candidates, the evaluators searched the Web and attended product fairs. A small
number of candidates in each class was chosen for further review, based on the initial
screening of products. Then the customer decided they wanted an NT platform, at least for
the "server." This almost forced the choice of ODBC (Open Data Base Connectivity), rather
than dealing with databases directly.

Following the initial screening, the evaluators built some basic prototypes, including a Web
browser and server, using Internet Explorer. During prototyping they discovered that the
available version of Internet Explorer could not execute the "POST' command (a feature
that Explorer is advertised to have), so Netscape Navigator became the browser of choice.

At this point the evaluators began to consider various architectural alternatives. No anchor
product (keystone) had been identified at the time of this workshop. However, prototyping
had yielded a system capable of using four different Web servers without changes to the
code. Thus they are plug compatible in this respect.

In order to screen candidates, the evaluators read testimonials, but they did not do vendor
qualification. A painful lesson learned was that you cannot always believe the marketing
hype. They have also not done comprehensive testing of the components, nor have they
looked at the business case-that will be the sponsor's job. The existing prototype is
intended to generate the requirements for the request for proposal (RFP) for the actual
system.

3.4.1.3 Procurement of Integrated CASE Environment

In this case study, the evaluators began with three sets of draft requirements from the
customer. Based on these requirements, the evaluators developed an initial design concept
and an initial categorization for the required tools. They gathered information on the various
tools within these categories, largely from product literature and other free information.
Initially they picked two to three tools in each category.

Part of the evaluation process was to construct "compliance matrices" comparing tool
features to requirements. The screening process included a check for certain important

CMU/SEI-97-SR-019 15

features (e.g., integrability, availability of an API, verification that access was possible, and
some very simple prototypes), as well as vendor presentation demonstrations and full
evaluation copies. Vendors were invited to give in-house demonstrations and then the
evaluators received evaluation copies. Evaluators tried to insist (mainly successfully) on
complete functionality from vendors, rather than crippled versions of tools. Most tool
evaluation copies were free. An important criterion for vendor qualification was vendor
"cooperativeness," and the evaluation process provided a good opportunity to assess the
developing relationships with vendors. The evaluators also looked for the ability to access
data within the tool. Somewhat surprisingly, the vendor demonstrations were particularly
effective at screening out candidates, since a number of vendors did not prepare
adequately to demonstrate their tool in its best light.

Some anchor (keystone) products were identified first. The evaluators then considered how
well other tools integrated with the anchors. The anchors chosen were the "normal"
computer-aided software engineering (CASE) tools. This was often a "gut-feel" decision.

Subsequent to tool selection, the team began to design the repository and integrate tools.
They found that prototype tests, scripts, and wrappers that had been developed were often
not adequate to address the problems that arose. Environmental conflicts between tools
were a big source of problems, but most were not discovered until the wrapping and
integrating activity began. Another major issue involved the differing semantics used by
various tools - this made data integration difficult.

The evaluators did gamble a bit with some products, based on enhancement plans
promised by vendors rather than actual product features. As a result, the evaluators were
"burned" on two of five selections, but they did have fallback positions for these instances.
They ended up purchasing 60 different products from 23 different vendors (although it is
hard to count the number of products, since it depends on how they are packaged or billed).

3.4.1.4 Getting Corporate Buy-In for a Requirements Management Tool Across a
Corporation

The challenge for this effort was to choose a requirements management tool to be used
across the corporation-about 50,000 people in 25 locations. The first issue was formulating
the selection team, which consisted of a systems engineer and a software engineer from
each of the four operating sections of the corporation, thus guaranteeing selection by
committee. In all there were about a dozen people involved in the selection process.

The selection committee narrowed the original field of 23 candidates down to 7, based on
brochures and what people knew about specific tools. This screening process was ad hoc
and was not based on system requirements. A request for information (RFI) was issued to
the surviving seven vendors, and a set of questions was sent to each. Based on answers
received from all seven, the set was further narrowed to four.

16 CMU/SEI-97-SR-019

The four surviving tool vendors were asked to provide a half-day demonstration of their tool.
The first half of this period was to be a general, undirected demonstration of the tool's
capabilities; the second half involved a directed demonstration, with the evaluators asking to
see specific tool actions. Some vendors had nothing prepared to show in the undirected
half. On the basis of these demonstrations, the field was further narrowed to three. This was
further narrowed to two based on vendor qualification, taking into account such things as
market share, revenues, and stability. One candidate was a "mom-and-pop shop," and the
evaluation committee had no confidence that they could meet a major commitment to a
large corporation. The evaluators also asked questions about market share, and the
answers for this set of vendors added up to somewhat more than 100%.

A request for quote (RFQ) was sent to the remaining two vendors, now constrained by legal
considerations as well. This document addressed about 40 major considerations. Some
considerations (e.g., ease of use) were supported by an evaluation matrix with ranges of
points. The subjective nature of this approach was highlighted when some evaluators tried
to jockey the evaluation criteria to support their viewpoints. In other cases, evaluators
proved to be quite naive concerning the real capabilities of tools.

The group (officially) did not use any of the tools or perform any hands-on evaluation; they
relied on proxy experience. They did interview other users, and requirements for the
selection were adjusted through the process.

The end result was the choice of a tool. However, instead of the expected large
procurement, only 150 licenses were obtained. Approximately one dozen projects are using
the tool today. One roadblock to wider use was that management did not encourage or fund
the deployment of the selected tool.

3.4.1.5 NASA COTS Tools Versus Components

This case study involves a make-or-buy decision for building flight dynamics software. Each
satellite launched needs this flight software, and five or six satellites are launched per year.
Strong advocacy groups supported both make and buy decisions. One group advocated the
use of a commercially available set of libraries, while a second group wanted to continue to
use an existing C++ component library. Both groups focused on a specific advantage of their
preferred solution; the group advocating the COTS solution desired the reliability of a COTS
product, while the C++ group favored maintaining control over changes and fixes.

The compromise evaluation strategy involved the groups each using their alternative to
build the necessary software, and then comparing and contrasting the results. The primary
evaluation criteria were cost, schedule, and reliability. Unfortunately, the biases of the
groups interfered with the evaluation strategy. The groups employed their preferred
approach, and only one group (the one favoring CH) collected the metrics necessary to
make a sound decision. In the end, each group concluded they were right and declared
victory.

CMU/SEI-97-SR-019 17

3.4.1.6 Choosing an Email System

In this case study, an organization made a decision to hire a consultant to choose an email
system. Unfortunately, the chosen consultant had a vested interest in a specific solution.
The consultant recommended his preferred solution, but was ignored by the organization.
Thus, the money spent on the consultant was wasted. The lesson here suggests that efforts
should be made to remove sources of bias from any evaluation.

3.4.2 Lessons Learned from the Case Studies

The BOG made some observations that constitute lessons learned from these case studies:

• There is no single, "one size fits all" evaluation process.

• An early data-gathering and discovery stage was important in all case studies. The
complexity and formality of this stage varied widely.

• All case studies were based on a process of elimination and employed some version of
progressive filtering. Some also employed elements of puzzle assembly and keystone
identification.

The BOG also drew some additional conclusions about what is hard about evaluation and
why:

• There are many existing and new components and versions with many interactions.
Management of components themselves becomes difficult as new versions are
delivered.

• There is often excess marketing hype and a corresponding lack of engineering
information. Some vendors appear to be incapable of anything other than hype.

• There are many undocumented system and environmental assumptions on the part of
the product makers. These often lead to conflicts when multiple components are
integrated.

• There is a lack of qualified evaluators-a new skill set is needed.

• There is often a lack of sufficient time and resources for performing evaluations. Not
enough emphasis is placed on the evaluation activity. The identification of an accepted
process model can help remedy this situation.

• There are many dimensions of the vendor and product to measure but a lack of
measurement techniques.

• One of the hardest problems is predicting where a technology or a product will be years
down the road, as the system is being maintained. As Neils Bohr said, "Prediction is
difficult, especially the future."

18 CMU/SEI-97-SR-019

3.4.3 Things We Need

The BOG generated several lists of processes, tools, and techniques that must be improved
to support a CBS approach. The following collapses and summarizes these lists:

• appropriate reference models for COTS products. It is difficult to compare products,
since there may be no common vocabulary or taxonomy. A reference model could be an
important instrument for evaluation.

• better support for prototyping and simulations, including benchmarking, testing, probing,
and performance tools

• better sources for market research data. It can be difficult to obtain accurate data-
consider that vendor-supplied market shares have been known to cumulatively exceed
100% of the market!

• improved methods of evaluating vendors. Current criteria, such as time in business,
responsiveness to customers, and willingness to back their product, are useful where a
documented track record is available. However, as a component market develops, and
components become "smaller" (like Java Beans or Active-X components), they are
increasingly coming from small vendors. This can make evaluation of vendors more
difficult.

• better understanding of business factors, such as licensing, business case analysis, and
loaded costs of COTS use over the lifetime of the system

• COTS risk classification and analysis approaches that address unknowns, confidence
levels in analysis, and the impact of inappropriate decisions

• better methods for documenting the context (i.e., system architectures and interfaces) in
which the evaluation is occurring and the expectations placed on the component by the
rest of the system

3.4.4 Do's and Don'ts

The BOG then agreed to try to formalize some of the things that should-and should not-be
done in evaluations.

Do

•

Guard against prejudice in the evaluation activity. Prejudice crept into a number of the
activities, leading to poor decisions or no decision in some cases.

Create flexible requirements. In a number of cases, evaluators found better and/or
cheaper ways to do things when afforded flexibility in system requirements. They were
able to use COTS components to their best advantage in these cases.

Evaluate your components in context. Stand-alone evaluation of components proved
inadequate except when the component was to be used alone. Prototypes that combine
multiple system components and evaluation via operational scenarios appear to be
essential techniques.

Plan for cost and schedule variances. The existing cost models are probably
inappropriate for COTS-based system development.

CMU/SEI-97-SR-019 19

• Assess necessary and sufficient parts, but do not "gold plate" requirements. Gold plating
of requirements, while tempting, will likely lead to a "build" rather than a "buy" decision.
Common experience of the BOG suggests that gold plating rarely leads to a better
system anyway.

• Use COTS where appropriate. This implies that COTS is inappropriate in some cases.
Thus, do not be blindly led by policies or pronouncements that mandate a certain level
of COTS. The primary weapon of the evaluator when arguing against a stated policy is a
well-conceived and thorough COTS evaluation.

Don't

• Make someone else responsible for your evaluation. While a contractor can bring
important capabilities to the table, you must live with the decision. In addition, the
knowledge you gain about components during evaluation is critical in system design.

• Believe what you read, regardless of the source: you have to evaluate it. Thus, do not
rely on the vendor's word or on lists of pre-qualified components.

• Expect 100% certainty from evaluations or 100% confidence in the results. The goal of
your evaluation process should be to select evaluation methods that reduce your
uncertainty (and risk) to an acceptable level.

• Go for the latest without a fallback. New technologies and products have their own set of
risks that are often the result of the marketplace - and you are not big enough to drive
the marketplace.

• Begin a CBS development effort with an existing (traditional software development)
mindset-stay open to changes in the process model.

• Forget how much glue you need. Integrating COTS components often requires more
glue than we like, and you will remember this statement every time a new release
arrives.

• Assume management understands COTS issues. If we don't, how can they?

• Forget to test. An evaluation is not a system test, nor are the promises of the vendor.
COTS components will likely require new strategies and extensive testing effort.

• Evaluate just for the sake of evaluation. Evaluation requires a context.

3.4.5 Risk Management

The BOG discussed evaluation as part of a risk management approach. In effect, the
criteria developed for evaluating components should reflect risks concerning the
components. A corollary is that if there is no risk, then there should be no criteria. While this
seems like a straightforward statement, it does hint at a mechanism whereby we can
evaluate criteria. The BOG went on to identify a number of particularly troublesome risks:

• Discovering faults in black boxes (COTS components) is extremely hard.

• When an integrated system composed of multiple components fails, it is sometimes
hard to identify the culprit. The culprit could be any of a number of components, or the
integration itself.

20 CMU/SEI-97-SR-019

• Even when you identify the source of a problem, remedying or repairing faults can be
extremely difficult, since you do not own the source code for the COTS components.

• Waiting for the faults to be fixed by the vendor can often result in significant delays and
down time. In some cases, the vendor has little motivation to even bother with fixing the
fault.

• A fix may expose (or create) another bug, forcing us to pull back for the "fixed" version
of the software.

• Vendors are often motivated to envelop the older, smaller, and simpler functionality that
you are using with much more expansive functionality, leading to an increasingly bloated
system.

• Our own predilection is to create overly stringent requirements (or poor application of
them), often resulting in the unjust rejection of potential components.

The group also discussed mechanisms to reduce the risks of incorporating a COTS
component into a system. Risk reduction mechanisms include

isolation of COTS products via wrappers and/or abstraction

built-in logging, diagnostics, or instrumentation interfaces

early consideration of reintegration costs that will occur during ongoing maintenance

architecture and design decisions that increase the flexibility of the glue code in the
system

vendor qualification in terms of responsiveness and cooperation

3.5 Conclusions of the Technology and Product Evaluation BOG

The key conclusions of the Evaluation Breakout Group include

• Evaluation is intimately connected to requirements specification, design, and system
architecture. This strongly suggests that the traditional waterfall model is inadequate for
building COTS-based systems, since the components selected have a significant impact
on the capabilities offered to the user and on the architecture and design of the system.

• No "one-size-fits-all" evaluation process is available, in large part because no two
contexts for evaluation are identical.

• The evaluation situation is likely to get worse before it gets better. Our appetite for new
systems does not seem to be declining. The speed of technological change and
component delivery seems to get faster all the time-we have almost instantaneous
delivery of some new versions of components via the Internet. This creates many
problems for the maintainer of a system incorporating the component. In addition, the
number of components to consider is growing rapidly as components (and vendors!) get
smaller (witness Java applets and Active X components).

At the final reporting session, the Evaluation BOG presented a stunning summary of the
BOG's activities, and perhaps served to frighten workshop participants about the
inadequate state of the practice of COTS evaluation and selection. However, they were
encouraged by the general agreement with the conclusions - the other BOGs had
developed similar positions.

CMU/SEI-97-SR-019 21

22 CMU/SEI-97-SR-019

4. Engineering and Design Breakout Group

Members of the Engineering and Design BOG represented industry, government, and

academic perspectives. Appendix A lists the members of the BOG.

The Engineering and Design BOG defined their charter as follows:

• to identify the issues group members have encountered in developing or maintaining
COTS-based systems

• to form an indication of the priorities of the issues identified

• to identify engineering and design approaches that assisted in resolving the identified
issues

As the BOG discussed the scope of their charter and then throughout the ensuing
identification of issues, the relationship of the topics of the three BOGs came up several
times. The group agreed that the separation between evaluation, acquisition and
management, and design and engineering is, in practice, artificial. There are acquisition and
management aspects to most, if not all, of the design and engineering issues that each
member reported. Participants also raised the need for varying kinds of evaluations

throughout the life cycle.

The issues that the BOG identified as critical to the successful design and engineering of a
COTS-based system centered on three themes:

1. the appropriate relationship between COTS components, requirements, and system and
software architectures

2. the identification and selection of the most appropriate component integration strategy to
support multiple purposes, such as instrumentation for debugging, testing, upgrading or
refresh, or evolution

3. the appropriate techniques for managing the limited insight or visibility into COTS
components as you select, integrate, test, and upgrade the components into the system

The BOG's discussion was structured around their charter: issue identification, candidate
practices, and issue prioritization. To facilitate the identification of issues, the BOG
structured its discussion by life-cycle phase. Due to the limited time for the workshop, the
BOG did not attempt to define a life-cycle process for COTS-based systems. Rather, it used
the phases corresponding to the development phases defined in RationaPs development
process [Kruchten 96]. Rational is a prominent provider of processes, services, and tools for
the development and maintenance of large, complex component-based systems.

RationaPs process defines the following five phases:

• Inception: Activities are focused on defining the scope of the system, product, or major
update, including the formulation of requirements.

• Elaboration: Activities are focused on the selection and validation of the system and
software architecture.

CMU/SEI-97-SR-019 23

• Construction: Activities are focused on building, composing, and testing the system or
product.

• Transition: Activities are focused on moving the system or product into operational use.

• Evolution: Activities are focused on continual upgrading of components due to product
and technology advances, changes in mission needs, or error correction.

The following sections summarize the issues that the BOG identified for each of the above
phases. While all of the issues surfaced by the BOG had engineering and management
process implications, the BOG focused on the technical issues inherent in the development
and evolution of COTS-based systems.

4.1 Inception Phase Issues

Activities in the inception phase focus on determining the scope of the system or major
update. Typical activities would include requirements definition and analysis and the
identification of key technologies and probably products. The following issues were
identified by the BOG:

• Relationship of requirements, architecture, and technology and product selection

Like the Evaluation BOG, the Engineering and Design BOG uncovered the questions of
whether the requirements drive the component selection or the available components
drive the requirements, and thus the architecture. Different parts of the system may be
driven by either requirements or by the availability of COTS products. When is it
appropriate to let requirements drive the architecture or to allow technology, such as
COTS products and standards, to drive the architecture?

One BOG member reported on a project for which requirements drove the development
of previous versions of the system. Now they would characterize the project as driven by
available technology. Other members of the BOG observed that, once you are
technology driven, you risk being at the whim of the vendor.

• Role of evaluation

The BOG dealt briefly with the question of evaluation. They agreed that evaluation
approaches should be "real world," if possible. Participants gave pragmatic examples of
product evaluation forms, such as multi-page checklists and weighting schemes for
product characteristics of importance to a project. The group noted that the value of a
checklist is that it makes you think about the important issues.

One of the challenges of evaluation is that you often find yourself looking at products
that are "apples and oranges." Reconciling these differences in order to get useful-and
comparable-information from all of the products may be difficult. In addition, participants
reported problems with validating a product that does not do what the vendor says it will
do after delivery.

It is one thing to specify a functional interface, but the real problem in the domain of real-
time and reliability-dependent systems is that the behavior is not well specified. The
vendors do not even talk about behavior. The BOG felt it was important to discuss
"cracking open" vendor products to determine their actual behavior.

24 CMU/SEI-97-SR-019

• Evaluating sets of components

One may be faced with a choice between using a set of three products or a single other
product. This emphasizes the need to prototype parts of your system with multiple
components to provide an objective basis for selection.

Component evaluation needs to take place in a clearly defined context. This is
complicated, however, if there are choices between sets of components. An individual
component may be a driving reason behind a particular design or architectural
approach. You increase the potential for mismatch with the introduction of every
additional component. Part of the solution is to realize that you cannot stop after
evaluating components individually; you must also evaluate together the set of
components that is being considered for integration into a given system.

One member of the BOG observed that there is also a risk if you use your best people
to evaluate a technology: the prototype will succeed, but the average people in your
group may not be as successful in implementing a real system using the technology.
Thus the usability of a given technology by your engineers should be considered in the
overall technology and product selection.

• Role of negotiation

If customers ask for the use of COTS products, there must be a tradeoff between
requirements and the degree to which COTS products can be integrated. Say you have
a system that generally does X. There are often show-stopper requirements that prevent
purchasing a single system to do X. A lot of what drives this is the desire to use as much
available technology as possible. Both technology and requirements drive the
architecture. What is an effective process? What considerations should such a process
encompass? How should projects identify the costs, benefits, and risks, and apply this
information in making requirements and technology tradeoffs? These questions point to
the need for negotiation in determining the final form of the system and the extent of its
dependence on COTS products.

4.2 Elaboration Phase Issues

The primary focus of the elaboration phase is the architecture. To avoid a lengthy diversion
into defining an architecture, the BOG members agreed to the following broad definition:

Architecture can be defined as components and interactions. The
architecture defines the components and the interactions between the
components.

A number of the issues identified overlap the inception issues concerning the role of
requirements, architecture, and available technology. The BOG identified the following
COTS-based architecture issues:

• Relationship of architecture to technology and product selection

The question of how technology drives the architecture is the flip side of asking how
components fit into an architecture. There emerged from the discussion the notion of a
symbiotic process centered on designing an architecture based on the requirements of
the system and the available components. This raised the issue of the need for ways to

CMU/SEI-97-SR-019 25

•

work with the set of components under consideration, not with each individual
component.

How does the available technology drive the architecture? Sometimes a component has
too little functionality or too much functionality, which will only serve to further complicate
these questions.

Relationship of architecture and components

BOG members observed that each COTS product is built to operate with a particular
architectural style [Shaw 95], such as pipe and filter or distributed system, thus it is
important to determine what is the kind and degree of match or mismatch between each
COTS product, other components under consideration, and the architecture. (See
[Garlan 95] for a further discussion of architectural mismatch.) This relationship may
affect what architecture and what components you select. In sharing experiences, the
BOG identified the following as viable mechanisms for managing the issues of
architecture and component mismatch:

- standards

- component behavior specifications

- adaptation strategies

- component evaluation checklists

While adaptation approaches, such as wrappers, glue code, or bridges, can be used to
compensate for the mismatch between a component and the architecture, the
participants raised a related issue regarding guidelines for determining what is an
appropriate amount of adaptation code. Many participants noted incidences of investing
excessive resources or producing excessive code to incorporate a COTS component.

• Specification of component behavior

Currently there is no standard way vendors capture or describe the behavior,
architectural assumptions, or intended operational use of a product. Ways to determine
this information and to motivate vendors to provide such information are needed.
Emerging concepts, such as Mary Shaw's credentials [Shaw 96], may offer partial
solutions for capturing component information. Credentials consist of a triplet of data,
including the attribute, the assertion, and the degree of reliability of the data. For
example, the assertion that a given component cannot run in the presence of virtual
memory provides the degree of reliability that this has been determined through internal
testing or from system documentation. Credentials provide information in addition to the
behavior and interfaces of the component.

• Selection and evaluation of architecture

Central to the selection and evaluation issue is determining what characteristics or
criteria are important to COTS-based architectures and their relative importance to the
successful delivery and use of a particular system. For example, an architecture for a
COTS-based system should support the replacement of components, thus helping to
address the problems of product release volatility and vendor lock. Ideally, the
architecture should accommodate separable components, so that the effort required to
make the change is proportional to the size of the change.

While none of the participants was aware of COTS-specific architectural evaluation
approaches, several were aware of some general purpose approaches; tailoring would
most likely be required. Evaluation approaches cited included the SEI scenario-based
Software Architecture Assessment Method (SAAM) [Kazman 96], Lucent Technologies

26 CMU/SEI-97-SR-019

•

•

architectural evaluation checklists,1 and Rational's application of use cases to validate
architectures [Kruchten 95]. [Abowd 97] provides a summary and discussion of current
practice in architectural evaluation.

Communicating COTS-based architectures

The BOG raised a series of related architecture issues: How should architectures,
including interfaces, for COTS-based systems be identified, specified, characterized,
described, and defined? Positive developments that the BOG thought were applicable,
in part, included architecture description languages (ADLs). A key question is whether
you can describe COTS products using some type of notation. ADLs or modeling
languages allow one to describe parts of an architecture to a desired level, enabling one
to reason abstractly about the system itself. Some examples of such languages cited by
the group are described below:

- Wright, under development by Carnegie Mellon University, was used
successfully to find defects in the specification of the modeling and simulation
architecture HLA (high level architecture) under development by the Defense
and Modeling Simulation Office (DMSO) [Wright 97].

- Rational's Unified Modeling Language (UML) provides a common notation
and semantics for specifying, constructing, visualizing, and documenting the
artifacts of software-intensive systems [Rational 97]. UML fuses the concepts
of Booch, OMT (Object Modeling Technique), and OOSE (Object-Oriented
System Engineering). It is targeted to a broad range of application domains
including telecommunications, avionics, information technology, and
concurrent, distributed systems. (See Appendix B for an overview of
Rational's Unified Modeling Language.)

One of the participants shared some experience in applying OMT on the TRANSCOM
Regulating and Command and Control Evacuation System (TRAC2ES) project. One
problem TRAC2ES encountered in using OMT to describe the architecture was the
unmanageable size of the resulting set of diagrams. Another participant familiar with
UML indicated that OMT focuses on the detailed design elements of a system. Other
parts of UML, particularly the Booch parts, are better suited to the architecture-level
aspect of a system. This example raises the issue of getting the right technology for the
problem.

Component integration strategy

What are the tradeoffs that need to be considered in determining whether to create a
system from a large collection of small components or from a few large components?
Cadre Teamwork is a COTS product, with constituent parts, that provides CASE tool
capabilities. Since it is from a single vendor, the interoperation it provides among its
parts without additional effort probably makes it worth using, when compared buying the
components yourself from different vendors. If you did buy the components yourself,
you would need to do the system integration and testing. On the other hand, you would
want to verify that the level of integration of the single vendor pieces by the supplier (in
this example, Cadre) is sufficient for your application.

1 This information is referenced in the AT&T internal report, Best Current Practices: Software
Architecture Validation (copyright 1991). AT&T, 1993.

CMU/SEI-97-SR-019 27

To understand the tradeoffs, it would be useful to have information on how components
can be and have been integrated in the past.

Identification of iteration strategy

Most participants thought that iterative development approaches were well suited to
COTS-based systems. This raises an important issue: How do we define development
increments that sufficiently factor in technical risks and customer influences? The BOG
had varying opinions and experiences. One member suggested starting with the
smallest, easiest, verifiable step. Another member put forth a scenario (or use-case),
risk-driven approach. With this approach, work on the higher risk operational scenarios
(or use-cases) or with the high-risk COTS products is done in the earliest iterations.

Another participant talked about how internal requirements change the set of COTS
products that you might need. He does a lot of parallel development initially. If you
cannot sit down and determine that a single system is the correct solution, you may
have to use multiple development paths, investigating competing technologies. Those
who try this should be aware of the potential social issues that are involved in the use of
parallel paths. The different teams involved in evaluating different technologies often
become competitors, since they are developing different skills, and the technology team
that wins out will most likely lead the overall development effort.

Risk identification

The BOG listed a number of differences in the kinds of risks for CBS as compared to
traditional system development. These included

• control of the functionality and evolution of a component

• validation of the functionality, specifically, does the component do what it actually
needs to do?

• frequency and degree of change of a component's functionality and APIs over time

• "make versus buy" tradeoffs and decisions

Participants suggested the need to identify key component relationships or high-risk
intra-component relationships, as well as critical inter-component relationships. Using
something like a technical risk analysis may help to determine areas that require
prototyping and detailed evaluation. One participant ventured the idea that, in
outsourcing situations such as is typical in the government sector, it is more important to
have a shared risk approach between the government program office and the
contractors.

Security

How do you ensure the security of a system built with COTS products? Many COTS
products that provide required functionality may not provide the necessary security.
What strategies can you apply to maintain necessary levels of security? For example,
military critical data must be encrypted and secure. Company critical information
accessible on the Internet may need to be encrypted. How is control over the keys to
encrypt and decrypt the information maintained when using COTS products? Does the
entire system have to be at the same level of security, or is it possible to segment off
some sections?

28 CMU/SEI-97-SR-019

4.3 Construction Phase Issues

Activities during the construction phase activities focus on building the delivered system or
update. The BOG members identified a variety of issues and shared a number of
construction techniques in the areas of wrappers, debugging, and testing.

The BOG identified the following construction issues for COTS-based systems:

• Appropriate construction of wrappers

The BOG members noted several important concerns in designing and constructing
wrappers:

- driving the wrapper design by the interface that is applicable to your
application or domain rather than the type of technology that is available

- precluding the future use of emerging technologies or new products as you
construct wrappers

- obsolescence of a plug-in or script used to tailor a COTS product when the
vendor issues a new product release

- reliance on the internal interfaces or behavior of COTS products since these
are more volatile

- use of vendor-specific features, leading to loss of portability and refreshability
and to susceptibility to vendor lock.

• Validation of vendor supplied interfaces (e.g., APIs)

Given the limited visibility or "black box" nature of COTS components, what techniques
can be used to characterize and validate the behavior of vendor-supplied interfaces?
Guidelines on what kind of information you should elicit from vendor sources to use
COTS products most effectively is needed. The BOG observed that interface
revalidation is needed with each new release. How much revalidation is necessary is
likely to differ with each COTS component, depending on the maturity of the vendor and
product and the underlying technology of the component.

• Error propagation from COTS components

How do you establish a reliable error handling capability? How do you handle errors in a
stateless environment, such as hypertext transfer protocol (HTTP)? COTS components
return errors through different mechanisms, such as return codes, errors written to
standard error, or exceptions. It is important for the system you are building to have a
single model for identifying and handling errors. Components are created with a
particular context in mind, and the system integrator has a different context. At a
philosophical level you can experience errors because of the differences in philosophy.
Often vendors do not anticipate how a customer will use a system, and such errors can
be very difficult to address.

• Testing and debugging COTS components and your system

What kind of testing and debugging is necessary for COTS-based systems? The COTS
components must be tested or debugged without opening the "black box." Members of
the BOG had found that current black-box debugging and testing techniques are not
sufficiently robust.

CMU/SEI-97-SR-019 29

4.3.1 Construction Techniques

Undoubtedly the best-known technique for the integration of COTS products is the use of
wrappers. The BOG discussed three different purposes that wrappers satisfy:

• insulation

A wrapper can be something like ODBC that allows you to access multiple existing
interfaces using a single API.

• adaptation

For example, in a CORBA system you may want to use a component that does not yet
provide a CORBA interface, so you may define one. This provides an adapter to the
existing interface in anticipation that the component will eventually provide a similar
interface.

In another form of adaptation, wrappers may contain logic in addition to simply providing
a different encapsulation. For example, a wrapper may contain filters and other agents
that convert data into a different format.

• instrumentation

Wrappers can be used to instrument, debug, or add assertions; they can assist with load
testing and scouting for side effects. One participant reported experience running a
component that was running fine in a Macintosh development environment but failed
when integrated and run in the real operational environment. Wrappers can assist in the
detection of information vital to determining what has happened in such a situation.

One technique for building wrappers is to apply abstraction concepts in designing the
interface. Perhaps you as an integrator want to insulate the remainder of your system from
changes to a particular component. If standard interfaces exist, it may be acceptable for you
to use them to achieve this insulation; if not, then it may make sense to develop this
encapsulation. If, for example, the client screens now have no knowledge of the underlying
database, then this makes the system more amenable to changes in the database product.

Another technique is to build a system with multiple interfaces so that it is generic. The
trade-off will be that, to get to a sufficiently generic level, you may have to minimize the
features you can make available.

In discussing the volatility of internal interfaces and features in COTS components, the BOG
members suggested avoiding any dependence on internal product interfaces and
functionality in wrappers or customization scripts. If this is not possible, then minimize and
isolate these dependencies. The BOG observed that the same solution applies to code
developed to work around bugs or deficient capabilities in a COTS product.

The more you use vendor-specific enhancements, the less portable your code becomes and
the more you may experience vendor lock problems. Access to unnecessary APIs can also
be a problem for future changes, but it can be limited by not exporting the APIs. There is still
some risk that developers or users will manage to access these APIs despite your efforts,
but project-wide discipline that recognizes this as a problem may help address that.

30 CMU/SEI-97-SR-019

Wrappers can address error handling to some extent but cannot take the place of a system-
wide error handling model. Wrapper code can provide some level of normalization on errors
that are returned. Keep in mind that there are limitations on how much information you can
derive regarding the source of the errors when using COTS products.

The BOG participants noted that, when handling errors in the context of a protocol that is
stateless, there is still state maintained in the various components. This might provide the
basis for error handling in this circumstance.

4.4 Transition Phase Issues

Activities during the transition phase address the introduction of the system or product to its
ultimate users. The BOG made an important observation that the transition issues listed
below have significant impacts on technology, product, and architecture choices. These
transition issues must be considered as part of an organization's inception and elaboration
activities. It is too late to wait to address these issue late in the life cycle as you deliver the

system.

The transition issues for COTS-based systems identified by the BOG are

• Licensing

Two major issues must be addressed: (1) what are the licensing arrangements needed
to allow your users to use each of the COTS products included in your system, and (2)
what are the licensing arrangements and usage implications for any COTS products that
are built on top of other COTS products.

For example, a COTS product such as Software Through Pictures (StP) includes a
Sybase database. The licensing for StP allows users of a system to use the Sybase
database included in StP or to use a Sybase database the end users might already
have installed on their operational environment. On the other hand, some systems that
include an Oracle database have licensing arrangements that allow their end users to
use only the Oracle database bundled into the system.

• Liability

The liability concern is best characterized by the following scenario. You build and
deliver a system with a COTS component. The COTS component in your system fails
during operation and someone dies. Who is liable: you or the COTS vendor?
Understanding the consequences of component failure within your system and how you
will protect yourself against such occurrences is vital. Resolution options could include
selecting an alternate COTS product, custom building the component to meet your
stringent requirements, or using an adaptation or wrapper approach that sufficiently
insulates the COTS component.

• Support strategy

Once a system or product is fielded, who do end users call when they have questions or
run into bugs? Understanding the support impact of the technology, product, or
architecture choices on the various users' business or mission operations is critical to
developing a viable system. The BOG enumerated several scenarios illustrating the
support issues that architects and engineers must consider. Does the help desk need to

CMU/SEI-97-SR-019 31

have an expert on every COTS component that is incorporated into the system? Is all
support done in-house, or is some referred to the vendor or to a third party? Can the
vendor or third party provide the level and timeliness of support required by your
customers?

• Assumptions of user's installed environment

How do you deploy a system that needs to determine which products and versions are
available? For example, you may want to work with any Web server and with any
network browser on the system and with any version of these products. When you are
distributing a system based on COTS products, what can you assume that the client
already has? This type of situation causes many problems.

There are technical issues in determining what COTS products are installed on a
machine and what versions of these products are in use. It would be preferable to do
this at runtime or (less preferably) at install time (since a system configuration can
change after a system has been installed). For example, Interleaf uses one Oracle
database and CASE tools may use a different database version. This can make it
impossible to load both tools on a single system at the same time (because of lack of
capacity), so the user ends up having to choose between running the different tools.
There are management issues as well in terms of what products will be supported.

4.5 Evolution Phase Issues

Activities during the evolution phase address the modifications to your system. COTS-based
systems will have new sources of change. One thing that causes such systems to evolve is
mission changes or changes in customer requirements. Another is that a new technology
becomes available or an older technology becomes obsolete. The evolution issues for
COTS-based systems identified by the BOG are

• Controlling architecture integrity

Given the potentially high volatility of COTS products and continually emerging
technology over the life of a system, how do you ensure that the COTS-based
architecture defined initially also evolves without loosing its integrity and consistency
and degrading into uselessness?

• Configuration management

While good configuration management (CM) has long been cited as a necessary
element of any successful software-intensive system, many organizations still fail to
address their CM needs seriously. The BOG members reported that configuration
control is a necessity with COTS-based systems. With the continual evolution of COTS
components in a COTS-based system, it is necessary to keep control of the baseline of
compatible COTS versions, glue code, and custom components for each release of your
system. CM applies not only to the delivered system but also to the development and
test environment.

Scheduling product upgrades

How do you schedule upgrades to COTS products? Your system cannot always convert
to the latest version as soon as it is available from the vendor. Time and resources are
required to understand the characteristics and behavior of a new version and its impact

•

32 CMU/SEI-97-SR-019

on your development and test environment and on your delivered system. Then you will
have to determine when to allow new versions, to minimize the impact.

• Engineering technology refresh

Technology refresh is related to the product upgrade issue although typically focused
more broadly. The BOG members discussed changes in technology approach,
significant changes in a product that would have correspondingly significant changes in
your system, such as a database schema change, and the incorporation of new
technology advances. Because of the potential scope of impact, the BOG postulated the
need for a "technology refresh team." Such a team might perform the following
functions:

- technology watch

- technology and product evaluation

- technical impact analysis

BOG members felt that it is vital for an organization to know what is currently available
as well as what is evolving and coming. As an example, how do you take advantage of
an emerging technology before the market has had a chance to make products
available that implement that technology? For a case in point, consider CORBA. It is not
a mature technology, and the availability of CORBA-compatible COTS products is
severely limited. This is reflected in the fact that many people are using HTTP because
that is where the marketplace currently is. One BOG participant has tried to deal with
this situation by dedicating a lot of time to working with advanced or beta releases of
products.

• Migration of legacy code

Organizations often have many existing systems that they cannot easily replace
immediately but that need to be able to take advantage of COTS products. An example
cited was the Cheyenne Mountain Upgrade, which needs to become compliant with the
Defense Information Infrastructure Common Operating Environment (DM COE).
Guidelines are needed on how to take large quantities of legacy code, that may or may
not be well engineered, and replace it, possibly in increments, with COTS products. The
group noted that legacy code migration places additional requirements and potential
compromises on a CBS architecture. This might provide the motivation for identifying an
architecture that can be implemented in increments.

4.6 Conclusions of the Engineering and Design BOG

4.6.1 Problem Summaries

In concluding their work, the Engineering and Design BOG summarized the problems that
they identified and grouped them into three issue areas: system relationships, component
integration, and component visibility.

CMU/SEI-97-SR-019 33

System Relationship Issues

• How do COTS components relate to

- requirements

- systems design and architecture

- technology

- integration strategy

• How do you communicate, identify, classify, specify, characterize, and describe a CBS
architecture?

• How do you determine the tradeoffs between requirements, architecture, and COTS
products?

• How do you evaluate and select COTS components?

• How do you identify the critical, high-risk interrelationships between components?

• How do you handle testing in a COTS based system?

Component Integration Issues

• How do you integrate COTS components into a system to support

- debugging

- instrumentation

- testing

- upgrade

- evolution

• How do you determine what are the fragile parts of the architecture?

• How do you select one integration strategy over another?

Component Visibility Issues

• How do you deal with the lack of visibility into COTS components with regard to

- performance

- behavior

- reliability

- security

- portability

- evolvability

- other non-functional requirements

• How do you discover how components behave or communicate?

• How do you debug systems made up of black boxes?

34 CMU/SEI-97-SR-019

4.6.2 Observations

One observation of the group was that some of the issues are very general to any type of
system and others are quite specific to CBS. Some of the issues have direct COTS-related
effects and others are sometimes more widely applicable.

The members of the BOG agreed that using COTS

• does not necessarily simplify the overall design and engineering process

• may actually increase the systems skills required of integrators

• changes the development process

• changes the risk profile associated with system development

They also agreed to these observations:

• The cost savings are in reuse and in evolution.

• Cost increases are in product evaluation and integration.

• Component selection becomes a new critical activity.

• System evolution becomes more complex.

• Prototyping is no longer optional.

CMU/SEI-97-SR-019 §£"

36 CMU/SEI-97-SR-019

5. Acquisition and Management Breakout Group

Members of the Acquisition and Management BOG represented industry, government, and

FFRDC perspectives. Appendix A lists the members of the BOG.

Over the course of the two-day workshop, the Acquisition and Management BOG identified
eight good practices for acquisition and management personnel implementing CBS

approaches. These practices can be summarized as follows:

Develop flexible central oversight to ensure that commercial components do not
undermine the needs of fielded systems.

Define a full COTS-based life-cycle process.

Understand and address the differences between government constraints and industry
perspectives.

Make COTS-specific competencies a job requirement for the entire workforce.

Coordinate with the many groups that are working on COTS issues.

Establish an information center for COTS issues.

Develop a set of metrics.

Explore organizational structures that optimize the use of COTS across multiple
projects.

At the outset, the group set its intended scope on the following areas:

• risk management

• acquisition practices

• cost and return on investment (ROI)

• business case(s)

• process(es)

They identified some initial concerns regarding their area of discourse. One was that the
areas of acquisition and management are (arguably) less well defined than some of the
other areas. For instance, where is acquisition in the five-panel model? (See Appendix C for
a description of the five-panel model.) When does it happen? Another concern related to the
lack of a practice baseline in this area. That is, if they began their work with a vision of "a
CBS practitioner of the future," with what does that contrast today? Finally, they recognized
that, for the purposes of the discussions during this workshop, they needed to scope any
assertions carefully. For instance, a statement such as "to acquire a COTS-based system,
you should ..." will likely need to be revised to include details of domain, size, cost, etc.

This breakout group structured their discussions by first soliciting suggestions for key
questions dealing with COTS/component-based systems from each of the participants. The

following list of questions resulted:

CMU/SEI-97-SR-019 37

• What guidance is needed? What are we (i.e., the government and its contractors)
missing at the acquisition and management policy level with regard to COTS-based
systems?

• What education and understanding are needed for upper management and for the entire
workforce? What tools will help furnish this understanding? (And what can one take
back from this workshop that might foster such understanding?)

• Where is acquisition in the assembly line? (Where is the acquirer?) (This refers to the
graphic of the five-panel model included in this report as Appendix C.)

- How do the government and contractor negotiate so they can incorporate the
new products as they are released? (Look at legal issues, not technical
issues.)

- When does the acquisition process begin? With the initial concept? At
Milestone 1?

- When does it end? Use the actual beginning/ending or formal
beginning/ending (as defined in 5000 series)?

- Is it the same for automated information system (AIS) and weapons
systems?

- How do we (government and contractor) accommodate the (rapid) rate of
technology update?

• From the management point of view, how do we measure any dimensions of the COTS
acquisition? (We also need to take sustainment into account.)

• From the management point of view, can we gain a deeper understanding of how
standards apply and which standards are needed?

- What do we put on contract to ensure that we get the interfaces we need?
Given a legacy system to which COTS items are to be added, interfaces,
especially at the F3I (form, fit, function, and interface) level, become very
important.

• What guidance can we create or elicit that considers maintenance, update, and post-
deployment in early planning? (That is, what can we offer to facilitate the sustainment of
these systems? This involves things that we need to do during the front-end acquisition
process that influence the whole life cycle. We need to consider things such as
licensing, escrow, data rights, management plan, etc.)

The above six sets of questions were grouped into three areas:

• metrics (cost, schedule, etc.) (See Section 5.1.)

• education and training (this became "wisdom and understanding") (See Section 5.2.)

• guidance and policy (See Section 5.3.)

Each of these three areas was then discussed. As the group proceeded, they noticed that,
although they could isolate a small number of pressing problems, the original notion of
"solutions to problems," framed as one of the objectives of the workshop, was not apparent
in this subject area. Thus, what appears in the report of this BOG are suggested "pointers
toward paths toward potential solutions"; these may not be solutions so much as palliatives.

38 CMU/SEI-97-SR-019

5.1 Metrics

The BOG agreed that, in order to discuss metrics, they must first establish answers for the
following questions, which need to be considered by domain (since the answers may differ
depending on the domain of the system):

• Why should I measure?

• What should I measure?

• How do I measure?

• What are the tradeoffs?

5.1.1 Why Should I Measure?

The BOG started by observing that the "I" in the above questions refers to the program
manager, and possibly project managers. They then enumerated the following reasons for
measuring.

One reason to measure is to gain approval:

• Program managers must measure (cost and schedule) estimates to gain approval.

• Proposal managers must measure (cost and schedule) estimates to gain approval.

It was observed that size may modify the level of detail of the above measurements,
although another participant commented that size should not modify the level of detail, and
some discussion ensued. In general, this discussion was an indication of the increased rigor
that is needed for all acquisitions.

Another reason to measure is to manage the project and support tradeoffs:

• Project/program managers must measure (cost, schedule, etc.) to manage the project.
One participant commented that we must also measure the quality of the process; we
need to do quality assurance way up front on products and services.

• Project/program managers must measure (cost, schedule, etc.) to evaluate or justify
tradeoffs.

Other reasons to measure include

• Managers must measure (cost, schedule, etc.) to preserve historical data, and to
improve the process that is being used.

• Project/program managers must measure whether the system or component does what
it should.

• Managers must measure whether or not the project is performing as expected.

CMU7SEI-97-SR-019 39

5.1.2 What Should I Measure?

Armed with this understanding of "why" (and who), the BOG next explored the question,
"What should I measure?" in more detail. While Table 1 does not give all-inclusive lists, it
does convey much of the group's conversation on this point.

The last set of measures in the table (regarding process) led one participant to raise a
question: What is the new life cycle? Another asked whether we know what processes have
been used. Examples of different processes seem to fall into three categories:

1. new start with a COTS-based system

2. migration from a legacy system to a new architecture and a COTS base

3. selective upgrade (e.g., component 'X' is bad, replace it [initial or sustainment])

What is measured here may be different depending on the process. One participant added
that earned value should still apply, but that one needs to know what the process is and
what the tasks are before earned value can be effectively applied. The method for
measuring is the same, but the tasking will be different. Fit analysis or gap analysis can be
used; one of the participants reported doing this recently.

5.1.3 How Do I Measure?

Assuming the above provided some understanding of "what," the BOG next explored the
question "How should I measure?" in more detail. Again, the following list is not meant to be
all inclusive.

Methods (strategies) and mechanisms for measuring that the group discussed included

• fit analysis (a mechanism)

• paying a little to buy more information

• counting defects (e.g., define quality attributes in terms of the customer perspective)

• counting function points

One participant reported on an experience at the US Air Force's Electronic Systems
Command (ESC) that is an example of paying a little to buy information. Initially ESC did not
have a good idea of the cost to do a particular project. So they wrote a vision statement,
then gave that to five contractors, with a small amount of money, for a period of three
months, with the instructions to go out and build a prototype. Each of the five contractors
had expertise in a different technology. None of those five contractors was guaranteed
participation in the next round. At the end of three months, the resulting prototypes from the
five contractors were opened to the public. ESC used the knowledge from this to do the real
contract RFP.

40 CMU/SEI-97-SR-019

Costs

Quality

licenses

purchase price

cost of operation

cost of development

cost of deployment

integration

dependency cost3

bureaucratic costs4

market research/market survey cost

training

testing

product quality

service quality
system quality

performance
documentation, training (e.g., number of help desk calls, average response time)
quality of company (vendor or organization providing product or service)

product stability
vendor stability
standards conformance (How well does product conform to standards?)

Schedule plans vs. actuals
activities and sequence paths

progress6

Process productivity of integrators

productivity of managers

productivity of testers

Table 1: Some Things to Measure

2 To help with calculating this, one might do fit analysis to see how much you need to develop.

3 Dependency cost is the cost of all the other items on which the product might depend and other

implications (licenses, etc.).

4 Bureaucratic costs are the actual acquisition costs, especially in concept exploration, etc.

5 Possible measures include the viability of the company, vendor, or organization providing the product

or service, their market share (if appropriate), their CMM level, etc.

6 One potential method for measuring this is earned value.

CMU/SEI-97-SR-019 41

It was noted there was a need to identify some means to measure everything on the list of
what to measure (see Table 1), although the BOG did not have the time to be that thorough.
It was also noted that a survey could be used as a mechanism to gain measurement

information.

5.1.4 What Are the Tradeoffs?

With the above coverage of "how", the BOG finally explored the question, "What are the
tradeoffs?" in more detail. This too is not meant to be all inclusive.

Tradeoffs enumerated by the group included

• tight integration vs. flexibility (lock yourself into one [tightly integrated] or go with many).
Considerations include

- number of vendors

- maintenance implications

- legal issues

There is a cost of flexibility; in addition, one is also assuming that using multiple
products makes a system truly flexible.

• general contractor vs. do-it-yourself

• prioritized and rated requirements

• go with the flow (of what is available or prominent in the marketplace) vs. use of military
standards

• cost and schedule vs. desired requirements ("desirements") (It is important to involve
users/functionals here.)

• schedule vs. functionality

5.2 Wisdom and Understanding

This area was initially labeled "education and training." In the ensuing discussion, other
phrases describing this area included workforce development, workforce migration and
skills development, and developmental issues related to technology infusion and
management awareness. In terms of educating upper management, the basic question is
how to better inform them; how will enlightenment occur? Peter M. Senge's book, The Fifth
Discipline: The Art and Practice of the Learning Organization [Senge 90], was
recommended to the group.

The following captures the BOG's thoughts in this area. The ideas listed are further
annotated with needed versus clarify, to distinguish those things that do not exist (and thus
are "needed") from those that exist but are not clearly understood.

42 CMU/SEI-97-SR-019

lessons learned database (needed)

- needs to be across programs

- needs to be synthesized and abstracted (plusses and minuses of the lessons
learned)

all levels of peer testimonials (needed)

better descriptive rhetoric (to better capture reality)(needed)

a CBS approach includes both benefits and risks (clarify)

intemalization of lessons learned and wisdom (needed)

incentives for the above intemalization (Is it money? If not, then what?) (needed)

removal of disincentives (e.g., data rights, legal issues) (needed)

process for technology infusion (needed)

- method for fielding new system as it comes out; how does one infuse new
technology projects?

- in both a micro (infusing the use of COTS products into a specific project)
and a macro sense (infusing the use of COTS into the entire DoD acquisition
process)

• information gathered across organizations (synthesis) (needed)

- example of partnership: Marines 3-D distributed training system program
sharing the cost of development with a commercial company

- Navy putting together an acquisition center of excellence

• implication that the "C" (commercial) makes a real difference in COTS (clarify)

• good education, from a number of perspectives (needed)

- requires both ongoing education and a recognition that ongoing education is
a cost of doing business

- education in COTS product (vendor type), as well as in COTS usage

- in terms of senior management awareness ("This is not as simple as it
sounds"); consider sessions at Software Technology Conference-at plenary
session where leaders talk about COTS issue; do a better job orchestrating
this; target opportunities

- just-in-time learning

- best way to learn is from people you respect

The group then discussed the question of whether there should be information
clearinghouses to help disseminate the acquired information and knowledge. It was noted
that there are a number of hard tradeoffs that decision makers must face (e.g., one
contractor/tightly integrated versus many contractors/flexible). What means exist to
disseminate the information that we find? Mark Schaeffer's area (the Systems Engineering
Offices in DoD Acquisition and Technology) may be a good place to learn more about the
effort required to insert more software material-including information on COTS issues-into
Defense Systems Management College (DSMC) courses.

CMU/SEI-97-SR-019 43

5.3 Policy and Guidance

Three broad areas where guidance is needed were articulated by the group:

• contracting

• standards

• sustainment (life-cycle strategy, planning, and definition)

5.3.1 Guidance for Contracting

There are many areas regarding contracting where misunderstanding exists (and hearsay
sometime prevails). The BOG looked at contracting in the context of the Information
Technology Management Reform Act (ITMRA) (now known as the Clinger/Cohen Act) and
the constraints imposed by it. They tried to answer the questions of what guidance for

contracting exists and what is still needed.

The discussion resulted in the following list of things for which guidance is needed:

• upgrades

• data rights (which involves FAR rewrites)

• use of escrow accounts

• licensing

- Has it been licensed by person's name, by number of seats, by enterprise,
etc.? Know your usage; you can negotiate, and make sure you have a clause
in the agreement so you can renegotiate.

- What does the license agreement include? Does it include servicing, all
upgrades, incremental upgrades, etc.? What occurs if an upgrade is
skipped?

- Are there license monitors? What occurs if the license is not renewed
(promptly)? People may not know about licensing and options they may have
(e.g., enterprise licensing).

• performance specifications, performance-based specifications

- direction to make maximal use of commercial products versus direction to do
performance specification (Note: a performance specification tells "what" not
"how"; i.e., it is not doing design specification.)

- What are the impacts of having COTS products furnished as a solution to the
performance specification? what are the implications in the sustainment
phase?

• liability

• vendor alliances

Necessary actions revealed by the discussion include

• Synthesize and disseminate guidance if it exists.

44 CMU/SEI-97-SR-019

• Create guidance if it is lacking.

• Dispel hearsay!

5.3.2 Guidance Regarding Standards

The discussion regarding standards resulted in a set of questions that need to be answered:

• What is the relationship between DII/COE and

- the various COTS-related policies

- various COTS products

• What is the relationship between DII/COE and COTS-based applications?

- What is the vendor's goal with respect to COTS-based systems? The
required minimum level of compliance with DII/COE is Level 5, but its
creator, the Defense Information Systems Agency (DISA), indicates a need
to have, as a goal, Level 8. (BOG discussion ensued as to whether or not
one had to have source code to do segmenting. One opinion was one should
be able to do a single segment with COTS [without the need for source
code]. Lockheed Martin is preparing a tool to do segmentation without having
source.)

• How do COTS products and a COTS approach relate to DISA's idea of interoperability?

• How do open systems and an open systems approach relate to COTS and a COTS
approach?

• How do you evaluate for standards compliance?

- This issue relates back to technical and institutional goals of why you want
this system in the first place; also goes back to how you write the
requirements.

- Evaluating the compliance with standards has a strong tie-in to technology
and product evaluations.

5.3.3 Guidance Regarding Sustainment

One clear conclusion of the BOG was that we must expand the management focus to
include the update part of the life cycle, not merely the initial purchase:

• Focus on the update part of the life cycle, not only the front end of the cycle.

- When do you update, how do you plan for replacement, etc., in budgeting?

If you support a hundred systems worldwide, and need to deal with different versions
of software, just trying to keep up with operating system releases could be a
challenge. As an example, the Army skipped one release of a product and it is
estimated it took them three times as long to get back in sync.

Another comment was that you should not skip a release, unless you never intend to
upgrade. The vendor may have a tool that allows you to skip upgrades, although you

CMU/SEI-97-SR-019 45

might have to pay all the upgrade fees (but you would not have to actually do all the
upgrades).

Look at the domain, as well as the life cycle of the product.

The May 1997 issue of CrossTALK (Volume 10, Number 5) has an article about
Portable Reusable Integrated Software Modules (PRISMJ, C+ Component
Integration Obstacles by Bruce D. Swanson and John G. McManus. It provides
information about how they found a path around problems associated with upgrades.

- What are the tradeoffs and what are the pitfalls?

• How independent are you (can you be) from the vendor's release cycle?

• Be ready for the "domino" effect of different vendors' upgrades.

• With respect to releases, there are three different strategies, each of which has a
technical side and a business side:

1. one-time buy ("user" takes over maintenance) One participant commented: "If the
COTS piece is a user piece, forget it."

2. take every release (vendor cycle is your cycle)

3. take selective releases (many dependencies)

The choice among these three strategies can be affected by many considerations:

A. the level of user interface

B. the domain

C. the interface with other programs

D. the number and distribution of users

E. security needs

You can look at the characteristics of your programs and suggest which of the above
three COTS release strategies to adopt. It might be useful to develop a matrix of 1-2-3
versus A-B-C-D-E, as in Figure 3.

The members of the group provided several examples of things that can be done regarding
sustainment.

• One group bought life-cycle support for the product; they negotiated this up front and
paid one time.

• Another issue is installation. If you have tens or hundreds of thousands of users and you
have a six-month release cycle, you cannot use Strategy 2 (take every release) above.
Use of Strategy 2 may work, though, if the release cycle is 18 months.

• An example from Air Force Material Command (AFMC) described how the users bought
their own releases instead of waiting for AFMC to give it to them, and that caused
problems.

• Another member commented that if you use configuration management to distribute
software automatically, the user does not have a choice as to when upgrade occurs;
e.g., a user logs in and automatically gets the latest release. However, this approach
has its own set of problems.

46 " CMU/SEI-97-SR-019

Level of user
interface

Domain Interface with
other programs

Number,
distribution of

users

Security needs

One-time
buy

Every
release

Selective
releases

Figure 3. Strategy Analysis Matrix

5.4 "Answers"

In preparation for the report to the plenary session later in the day, the initial breakout group
posed to themselves the question, "What can we do about this?" With a caveat to "get real"
on what they proposed (i.e., is it something that has a reasonable chance or that we can
influence?), they labeled the resulting thoughts as "answers."

• Central oversight (with flexibility) is needed to ensure that the use of COTS does not
undermine the needs of fielded systems (especially with regard to interoperability).

- The group explored why COTS was such a hot issue now. In terms of "faster,
better, cheaper," one participant noted that the overriding concern appeared
to be (in this order) "cheaper," next "faster," and finally, "better."

- Another participant noted that COTS and standards appeared to be mutually
exclusive.

- Another noted that part of the interoperability issue will be solved by more
standard products and that DII/COE is part of the solution.

• A full COTS-based life-cycle process for COTS-based systems, including requirements
gathering, testing, and evaluation, must be defined (as in DOD-STD- 2167A).

- We need to be clear on testing issues initially and in the sustainment portion
of the full life cycle.

• Recognition of the differences between government constraints and the industry
perspective must be part of any acquisition and management strategy. This implies that
the processes in the bullet above may have significant differences from those used by
industry. (It was noted this was not so much an answer as a wise statement.)

• COTS-specific core competencies must be a job requirement for the entire workforce
dealing with software (program managers, etc.).

CMU/SEI-97-SR-019 47

- What skill sets are required of the (entire) workforce?

• Facilitate coordination between the many groups that are working "the COTS issue."

• Develop a characterization matrix for program/attribute factors.

• Establish an information center for COTS-related issues.

• Work toward a better way to describe COTS-related issues.

- It was noted that work towards this goal can be part of the life-cycle process,
and it also ties to the core competencies item.

• Develop a set of useful and useable metrics that relate to COTS-based systems.

• Explore the viability of organizational structures that optimize the use of COTS products
and technologies across multiple projects (programs).

- We should not only optimize the initial use of COTS products, but also their
sustainment.

- How do we get an organization out of a stovepipe mentality and get support
for infrastructure? (It was noted that the requirements approval process is a
stovepipe, and the budget approval process is a stovepipe, but they are
different stovepipes.)

5.5 Conclusions of the Acquisition and Management BOG

The BOG concluded with actions that they thought were feasible to take-in some cases,
perhaps by members of the BOG themselves. As can be seen, many of them are taken
from parts of the discussions reported on in the preceding sections.

AM. Look at the Buying Commercial and Nondevelopmental Items (CANDI) manual and
propose software-related items for inclusion.

AI2. Explore the fit between DII/COE and COTS. (This was in the context of guidance
regarding standards.)

AI3. Develop a characterization matrix for program/attribute factors.

AI4. Establish an information center for COTS-related issues.

AI5. Establish coordination between the many groups that are working on "the COTS issue."

AI6. Work toward a better way to describe COTS-related issues.

48 CMU/SEI-97-SR-019

6. Workshop Conclusion

We are thoroughly convinced that this workshop was useful and productive. The
participants that were brought together all contributed significantly to the growing body of
CBS knowledge. In some cases they suggested new hypotheses; in others, they served to
confirm the hypotheses of others. The ideas that took greater shape during these two days
will form the basis for future work investigating COTS-based systems. Future workshops in
this series will depend on the results of this work to advance the maturity of CBS practices
for the whole community.

The SEI would like to thank all of the participants in this workshop. Without their
contributions no progress would be possible. We are looking forward to a continued
association with all of these valuable members of the CBS community.

CMU/SEI-97-SR-019 49

50 CMU/SEI-97-SR-019

Appendix A: Workshop Participants
A.1 Technology and Product Evaluation Breakout
Group
Participants in the Technology and Product Evaluation BOG included

1. Scott Bachman, Department of Defense

2. John C. Dean, National Research Council of Canada

3. Anthony Earl, Software Engineering Institute (scribe)

4. Peter H. Feiler, Software Engineering Institute

5. Dave Gluch, Software Engineering Institute

6. David Kyle, Joint Engineering Design Management Information and Control System
(JEDMICS)

7. Tom Loggia, Lockheed Martin

8. Ed Morris, Software Engineering Institute (facilitator)

9. Gerri Regazzi, Tessada and Assoc, Inc.

10. Steve Roberts, Planning Research Corporation (PRC)

11. Louis Rose, Software Productivity Consortium (SPC)

12. Tom Timberlake, Boeing

13. Kurt Wallnau, Software Engineering Institute (co-facilitator)

14. Marvin Zelkowitz, National Institute of Standards and Technology (NIST)/University
of Maryland

A.2 Engineering and Design Breakout Group

Participants in the Engineering and Design BOG included

1. Lisa Brownsword, Software Engineering Institute (facilitator)

2. Gary Chastek, Software Engineering Institute

3. Gail Cochrane, TRW

4. Mike Gagliardi, Software Engineering Institute

5. Robert Monroe, Carnegie Mellon University

6. David Remkes, PRC

7. Caroline Ruso, PRC

8. Robert Seacord, Software Engineering Institute (scribe)

9. Mark Tappan, SPC

10. Mark Vigder, National Research Council of Canada

CMU/SEI-97-SR-019 51

A.3 Acquisition and Management Breakout Group

Participants in the Acquisition and Management BOG included

1. Linda D. Brown, OASD (C3I)/IT

2. David J. Carney, Software Engineering Institute (facilitator)

3. Mark Cavanaugh, Software Engineering Institute

4. Judith A. Clapp, The MITRE Corporation

5. Eileen C. Forrester, Software Engineering Institute

6. Steve Nelson, JEDMICS Program Office

7. Patricia A. Oberndorf, Software Engineering Institute

8. Carol A. Sledge, Software Engineering Institute (scribe)

9. Nancy Solderitsch, Lockheed Martin C2 Integration Systems

10. LCDR Doug Swanson, Naval Reserve Information Systems Office

52 CMU/SEI-97-SR-019

Appendix B: Unified Modeling Language

The Unified Modeling Language (UML) is a language for specifying, constructing,
visualizing, and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch, OMT,
and object-oriented software engineering (OOSE). The result is a single, common, and
widely usable modeling language for users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with
existing methods. In particular, the UML authors targeted the modeling of concurrent,
distributed systems, meaning that UML contains elements that address these domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a
standard process. Although the UML must be applied in the context of a process, it is
the experience of its creators that different organizations and problem domains require
different processes. (For example, the development process for shrink-wrapped
software is an interesting one, but building shrink-wrapped software is vastly different
from building hard-real-time avionics systems upon which lives depend.) Therefore, the
efforts concentrated first on a common metamodel (which unifies semantics), and
second on a common notation (which provides a human rendering of these semantics).
The UML authors will not necessarily standardize a process, although they will continue
to promote a development process that is use-case driven, architecture centric, iterative,
and incremental.

CMU/SEI-97-SR-019 53

54 CMU/SEI-97-SR-019

Appendix C: The Five-Panel Model

COTS
Market

Qualify Assemble

4*t»
Figure 4: The Five-Panel Model

The model pictured in Figure 4 is called the five-panel model. The five panels represent
various activities that address different aspects of turning a set of COTS components
into a COTS-based system.

• The COTS Market panel deals with the market survey and analysis activities that
determine what are the viable candidates for a particular component, from both a
business and a technical perspective.

• The Qualify panel activities investigate the hidden interfaces and other
characteristics and features of the candidate products. The result of this discovery
process is to reveal the necessary information to make a selection and identify
possible sources of conflict and overlap, so that the component can be effectively
assembled and evolved.

• The Adapt panel activities amend the selected components to address potential
sources of conflict. The figure implies a kind of component "wrapping," but other
approaches are possible (e.g., mediators and translators).

• The Assemble panel shows the integration of the adapted components into an
architectural infrastructure. This infrastructure will support component assembly and
coordination, and differentiates architectural assembly from ad hoc "glue."

• The Update panel acknowledges that new versions of components will replace older
versions; in some cases, components may be replaced by different components with
similar behavior and interfaces. These replacement activities may require that
wrappers be rewritten, and they suggest the advantage of well-defined component
interfaces that reduce the extensive testing otherwise needed to ensure that the
operation of unchanged components is not adversely affected.

CMU/SEI-97-SR-019 55

56 CMU/SEI-97-SR-019

Appendix D: List of Acronyms

ADL Architecture description language

AFMC Air Force Materiel Command

API Application program interface

BOG Breakout group

CASE Computer-aided software engineering

CBS COTS-based system

CM Configuration management

CMM Capability Maturity Model

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf

DCOM Distributed Component Object Model

DII/COE Defense Information Infrastructure/Common Operating Environment

DISA Defense Information Systems Agency

DMSO Defense Modeling and Simulation Office

DSMC Defense Systems Management College

ESC Electronic Systems Command

FAR Federal Acquisition Regulations

FFRDC Federally funded research and development center

HLA High-level architecture

HTTP Hypertext transfer protocol

ITMRA Information Technology Management Reform Act

ODBC Open Data Base Connectivity

OMG Object Management Group

OMT Object Modeling Technique

CMU/SEI-97-SR-019 57

OOSE Object-oriented system engineering

PRISM Portable Reusable Integrated Software Modules

RFI Request for information

RFP Request for proposal

RFQ Request for quote

ROI Return on investment

SAAM Software Architecture Assessment Method

SEI Software Engineering Institute

StP Software Through Pictures

TRAC2ES TRANSCOM Regulating and Command and Control Evacuation System

UML Unified modeling language

58 CMU/SEI-97-SR-019

References

[Abowd 97]

[Garlan 95]

[Kazman 96]

[Kruchten 95]

[Kruchten 96]

[Lichota 97]

[Senge 90]

[Rational 97]

[Shaw 95]

[Shaw 96]

[Wright 97]

Abowd, G., et al. Recommended Best Industrial Practice for Software
Architecture Evaluation (CMU/SEI-96-TR-025, ADA 320 768).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, January 1997.

Garlan, D. et al. "Architectural Mismatch (Why It's Hard to Build
Systems Out of Existing Parts)," 170-185. Proceedings, 17th

International Conference on Software Engineering. Seattle, WA, April
23-30,1995. New York: Association for Computing Machinery, 1995.

Kazman, Rick; Abowd, Gregory; Bass, Len; and Clements, Paul.
"Scenario-Based Analysis of Software Architecture," IEEE Software 13,
6 (November 1996): 47-55.

Kruchten, P. "The 4+1 View Model of Architecture." IEEE Software 12,
6 (November 1995): 42-50.

Kruchten, P. A Rational Development Process [online]. Available
Worldwide Web <http://www.rational.com>.

Lichota, R.; Vesprini, R.; and Swanson, B. "PRISM Product
Examination Process for Component Based Development."
Proceedings of the Fifth International Symposium on Assessment of
Software Tools and Technologies. Pittsburgh, PA, June 2 - 5,1997.
Los Alamitos, CA : IEEE Computer Society.

Senge, Peter. The Fifth Discipline: The Art and Practice of the Learning
Organization. New York: Doubleday/Currency, 1990

Rational Software Corporation. Unified Modeling Language: UML
Summary [online]. Available Worldwide Web
<http://www.rational.com/uml>.

Shaw, M. "Making Choices: A Comparison of Styles for Software
Architecture." IEEE Software 12,6 (November 1995): 27-41.

Shaw, Mary. "Truth vs. Knowledge: The Difference Between What a
Component Does and What We Know It Does." Proceedings of the 8th
International Workshop on Software Specification and Design. March
1996.

Wright, [online]. Available Worldwide Web

<http://www.cs.cmu.edu/afs/cs/project/able/www/wright/index.html>.

CMU/SEI-97-SR-019 59

60 CMU/SEI-97-SR-019

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE
November 1997

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Workshop on COTS-Based Systems

5. FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)

Patricia Oberndorf, Lisa Brownsword, Ed Morris, Carol Sledge

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-97-SR-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report documents the proceedings of the first Workshop on COTS-Based Systems, held at the Software Engineering

Institute (SEI) June 10-11, 1997. It describes the workshop activities, the discussions of three breakout groups, and some

general conclusions reached by participants in the workshop.

14. SUBJECT TERMS acquisition, COTS (commercial off-the-shelf), COTS architecture,
15. NUMBER OF PAGES

60

COTS-based systems, COTS system design, COTS system management, evaluation
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-£

Prescribed by ANSI Std. Z39-18
298-102

